p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23⋊2C42, C25.2C22, C24.627C23, C24.40(C2×C4), (C22×C42)⋊1C2, C22.76(C4×D4), C23.717(C2×D4), (C22×C4).647D4, C22.64C22≀C2, C22.39(C2×C42), C23.340(C4○D4), C22.96(C4⋊D4), C22.22(C4⋊1D4), C23.241(C22×C4), (C23×C4).627C22, C2.3(C23.23D4), C22.46(C4.4D4), C22.22(C42⋊2C2), C22.44(C42⋊C2), C2.2(C24.3C22), C2.3(C24.C22), C22.69(C22.D4), C2.7(C4×C22⋊C4), (C2×C22⋊C4)⋊11C4, (C2×C4)⋊8(C22⋊C4), (C22×C4).97(C2×C4), (C2×C2.C42)⋊2C2, (C22×C22⋊C4).2C2, C22.87(C2×C22⋊C4), SmallGroup(128,169)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊2C42
G = < a,b,c,d,e | a2=b2=c2=d4=e4=1, dad-1=ab=ba, eae-1=ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, de=ed >
Subgroups: 812 in 414 conjugacy classes, 140 normal (8 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C42, C22⋊C4, C22×C4, C22×C4, C24, C24, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C23×C4, C25, C2×C2.C42, C22×C42, C22×C22⋊C4, C23⋊2C42
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C42, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C42, C2×C22⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C42⋊2C2, C4⋊1D4, C4×C22⋊C4, C23.23D4, C24.C22, C24.3C22, C23⋊2C42
(1 3)(2 42)(4 44)(5 48)(6 37)(7 46)(8 39)(9 11)(10 16)(12 14)(13 15)(17 47)(18 40)(19 45)(20 38)(21 23)(22 28)(24 26)(25 27)(29 59)(30 64)(31 57)(32 62)(33 61)(34 58)(35 63)(36 60)(41 43)(49 51)(50 56)(52 54)(53 55)
(1 43)(2 44)(3 41)(4 42)(5 18)(6 19)(7 20)(8 17)(9 13)(10 14)(11 15)(12 16)(21 25)(22 26)(23 27)(24 28)(29 35)(30 36)(31 33)(32 34)(37 45)(38 46)(39 47)(40 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 31 23 47)(2 32 24 48)(3 29 21 45)(4 30 22 46)(5 14 62 54)(6 15 63 55)(7 16 64 56)(8 13 61 53)(9 57 49 17)(10 58 50 18)(11 59 51 19)(12 60 52 20)(25 37 41 35)(26 38 42 36)(27 39 43 33)(28 40 44 34)
G:=sub<Sym(64)| (1,3)(2,42)(4,44)(5,48)(6,37)(7,46)(8,39)(9,11)(10,16)(12,14)(13,15)(17,47)(18,40)(19,45)(20,38)(21,23)(22,28)(24,26)(25,27)(29,59)(30,64)(31,57)(32,62)(33,61)(34,58)(35,63)(36,60)(41,43)(49,51)(50,56)(52,54)(53,55), (1,43)(2,44)(3,41)(4,42)(5,18)(6,19)(7,20)(8,17)(9,13)(10,14)(11,15)(12,16)(21,25)(22,26)(23,27)(24,28)(29,35)(30,36)(31,33)(32,34)(37,45)(38,46)(39,47)(40,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,23,47)(2,32,24,48)(3,29,21,45)(4,30,22,46)(5,14,62,54)(6,15,63,55)(7,16,64,56)(8,13,61,53)(9,57,49,17)(10,58,50,18)(11,59,51,19)(12,60,52,20)(25,37,41,35)(26,38,42,36)(27,39,43,33)(28,40,44,34)>;
G:=Group( (1,3)(2,42)(4,44)(5,48)(6,37)(7,46)(8,39)(9,11)(10,16)(12,14)(13,15)(17,47)(18,40)(19,45)(20,38)(21,23)(22,28)(24,26)(25,27)(29,59)(30,64)(31,57)(32,62)(33,61)(34,58)(35,63)(36,60)(41,43)(49,51)(50,56)(52,54)(53,55), (1,43)(2,44)(3,41)(4,42)(5,18)(6,19)(7,20)(8,17)(9,13)(10,14)(11,15)(12,16)(21,25)(22,26)(23,27)(24,28)(29,35)(30,36)(31,33)(32,34)(37,45)(38,46)(39,47)(40,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,23,47)(2,32,24,48)(3,29,21,45)(4,30,22,46)(5,14,62,54)(6,15,63,55)(7,16,64,56)(8,13,61,53)(9,57,49,17)(10,58,50,18)(11,59,51,19)(12,60,52,20)(25,37,41,35)(26,38,42,36)(27,39,43,33)(28,40,44,34) );
G=PermutationGroup([[(1,3),(2,42),(4,44),(5,48),(6,37),(7,46),(8,39),(9,11),(10,16),(12,14),(13,15),(17,47),(18,40),(19,45),(20,38),(21,23),(22,28),(24,26),(25,27),(29,59),(30,64),(31,57),(32,62),(33,61),(34,58),(35,63),(36,60),(41,43),(49,51),(50,56),(52,54),(53,55)], [(1,43),(2,44),(3,41),(4,42),(5,18),(6,19),(7,20),(8,17),(9,13),(10,14),(11,15),(12,16),(21,25),(22,26),(23,27),(24,28),(29,35),(30,36),(31,33),(32,34),(37,45),(38,46),(39,47),(40,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,31,23,47),(2,32,24,48),(3,29,21,45),(4,30,22,46),(5,14,62,54),(6,15,63,55),(7,16,64,56),(8,13,61,53),(9,57,49,17),(10,58,50,18),(11,59,51,19),(12,60,52,20),(25,37,41,35),(26,38,42,36),(27,39,43,33),(28,40,44,34)]])
56 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | 2Q | 2R | 2S | 4A | ··· | 4X | 4Y | ··· | 4AJ |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C4 | D4 | C4○D4 |
kernel | C23⋊2C42 | C2×C2.C42 | C22×C42 | C22×C22⋊C4 | C2×C22⋊C4 | C22×C4 | C23 |
# reps | 1 | 3 | 1 | 3 | 24 | 12 | 12 |
Matrix representation of C23⋊2C42 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;
C23⋊2C42 in GAP, Magma, Sage, TeX
C_2^3\rtimes_2C_4^2
% in TeX
G:=Group("C2^3:2C4^2");
// GroupNames label
G:=SmallGroup(128,169);
// by ID
G=gap.SmallGroup(128,169);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,2,224,141,456,422,268]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=e^4=1,d*a*d^-1=a*b=b*a,e*a*e^-1=a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations